sexta-feira, 24 de agosto de 2018

Trans-intermechanical quantum Graceli transcendent and indeterminate -

Effects 11,060 to 11,061.



Radioactivity depends on the potential of radioactive isotopes transformations and interactions, tunnels, entanglements, and conductivities, as well as the energies and their potentials of actions and interactions on the radioactive ones, such as piezoelectric, magnetism, temperature, emission potential and absorptions, electrostatic potential, pressure resistance, and phosphorescent and fluorescent effects.

That is, a system of interactions, and actions of one over another, involving Graceli's potential [categories of Graceli], isotopes, energies, phenomena, and phenomenal dimensions.


Where it forms a trans-intermechanical transcendent and indeterminate category Graceli.


This also has the conductivity of radioactivity, such as luminescence, and anecdotal potential of isotopes.



Trans-intermecânica quântica Graceli transcendente e indeterminada – de radioatividade.

Efeitos 11.060 a 11.061.



A radioatividade depende do potencial de transformações e interações dos isótopos radioativos, tunelamentos, emaranhamentos, e condutividades radioativa, como também das energias e seus potenciais de ações e interações sobre os radioativos, como os piezo-elétricos, magnetismo, temperatura, potencial de emissões e absorções, potencial eletrostático, de resistência à pressões, e a efeitos fosforescentes e fluorrescentes.

Ou seja, um sistema de interações, e ações de uns sobre outros, onde envolve potenciais [categorias de Graceli], isótopos, energias, fenômenos e dimensões fenomênicas de Graceli.


Onde com isto se forma uma trans-intermecânica transcendente e indeterminada categorial Graceli.


Com isto se tem também a condutividade de radioatividade, como de luminescências, e ancasças de potenciais de isótopos.

Four-segment sequence of Graceli on the Fibonacci sequence.

That is, as the fibonassi sequence progresses the curve tends to open increasing the distance progressively according to aperture index.


As well as the speed and acceleration time at each curve.

That is, if there is a curve of height and length in the Fibonassi system, and in the Graceli sequence one has a latitudinal opening and velocity time, becoming a four-dimensional sequence system.



Sequência quadrimensional de Graceli sobre a sequência de Fibonacci.

Ou seja, conforme avança a sequência de fibonassi a curva tende a se abrir aumentando a distância progressivamente conforme índice de abertura.


Como também o tempo de velocidade e aceleraração em cada curva.

Ou seja, se tem um curva de altura e longitude no sistema de Fibonassi, e na sequência de Graceli se tem uma abertura latitudinal e tempo de velocidade, se tornando um sistema sequência quadrimensional.


Resultado de imagem para imagens da sequencia de fibonacci

Resultado de imagem para imagens da sequencia de fibonacci
Resultado de imagem para imagens da sequencia de fibonacci
Resultado de imagem para imagens da sequencia de fibonacci
Resultado de imagem para imagens da sequencia de fibonacci
Resultado de imagem para imagens da sequencia de fibonacci

trans-intermecânica transcendente e indeterminada categorial Graceli sobre radioatividades e outros.

efeitos 11.060.


o tempo, potenciais e intensidade de fluxos radioativos de energias e particulas, para radioatividade, luminescências, emissões de partículas e elétrons na radiação térmica e elétrica, e outros.

vejamos na radioatividade nas emissões de partículas, ondas com variações em seus potenciais de energia e fluxos de tempo e intensidade nas emissões, conforme energias, potenciais, fenômenos e tipos de materiais radioativos.



onde as particulas alfa (α - emissão do núcleo do hélio), beta-menos (- o nêutron desintegrando-se em um próton, com a emissão de um elétron e de seu antineutrino associado); gama (γ – radiação eletromagnética); beta-mais ( - o próton desintegrando-se em um nêutron, com a emissão de um pósitron e de seu neutrino associado), passampor fases e intensidades de fluxos aleatórios indeterminados e estatísticos conforme os materiais emissores e as energias das partículas emitidas.

tqoaiG =[hc][T/IEEpei [it]=[pTEMRLD] e[fao][ itd][iicee]tetdvd [pe] cee [caG].]

tqoaiG =Trajetórias quântica oscilatórias aleatórias indeterminadas Graceli.



Temperatura dividido por isótopos e estados físicos e estados potenciais de energias e isotopos = emissões, fluxos aleatórios de ondas, interações de íons, cargas e energias estruturas, tunelamentos e emaranhamentos, transformações e decaimentos, vibrações e dilatações, potencial eletrostático, condutividades, entropias e entalpias. categorias e agentes de Graceli.

h e = índice quântico e velocidade da luz.

[pTEMRD] = POTENCIAL TÉRMICO, ELÉTRICO, MAGNÉTICO, RADIOATIVO, DINÂMICO]...



Desde a descoberta da radioatividade natural pelo o físico francês Antoine Henry Becquerel (1852-1908), em 1896, diversos processos radioativos (decaimentos) foram então sendo descobertos, conforme descrevemos em verbetes desta série, e assim resumidos: alfa (α - emissão do núcleo do hélio), beta-menos (- o nêutron desintegrando-se em um próton, com a emissão de um elétron e de seu antineutrino associado); gama (γ – radiação eletromagnética); beta-mais ( - o próton desintegrando-se em um nêutron, com a emissão de um pósitron e de seu neutrino associado), e a captura eletrônica (captura de um elétron da eletrosfera pelo próton do núcleo, com a formação de um nêutron e a emissão de um neutrino associado ao elétron). Esses processos foram explicados graças aos seguintes modelos teóricos: 1) Efeito Túnel formulado, em 1928, pelos físicos, o norte-americano Edward Uhler Condon (1902-1974) e o inglês Ronald Wilfrid Gurney (1898-1953) e, independentemente, pelo russo-norte-americano George Gamow (1904-1968); 2) Força Fraca proposto, em 1934, pelo físico ítalo-norte-americano Enrico Fermi (1901-1954; PNF, 1938). Foi também em 1934, que o casal de físicos franceses, Irène (1897-1956) e Jean Frédéric Joliot-Curie (1900-1958) descobriu a radioatividade artificial com a emissão β+. A captura eletrônica ficou evidenciada em 1937 em experimentos conduzidos pelo físico norte-americano Luis Walter Alvarez (1911-1988), no Laboratório de Radiação da Universidade da Califórnia (Berkeley, USA). Logo depois, em 1938, os químicos alemães Otto Hahn (1879-1968; PNQ, 1944) e Fritz Strassmann (1902-1980) produziram a fissão nuclear induzida e, em 1940, os físicos russos Georgii Nikolaevich Flerov (1913-1990) e Konstantin Antonovich Petrzhak (1907-1998) descobriram a fissão nuclear espontânea
                   Os processos radioativos descritos acima se caracterizam pela emissão de elétrons(e-) e/ou de pósitrons (e+). Contudo, Em 1951, o físico e químico russo Vitalii Iosifovich Gol´danskii (1923-2001) desenvolveu uma teoria para um novo tipo de radioatividadecaracterizada pela emissão de um próton (p). Mais tarde, em 1965, o próprio Gol´danskii começou o estudo teórico da radioatividade com emissão de dois prótons. Esses dois novos tipos de radioatividade foram observados, respectivamente, em 1970 (Physics Letters B33), por K. P. Jackson, C. U. Cardinal, H. C. Evans, N. A. Jelley e J. Cerny (p. 281) e por Cerny, J. E. Esternl, R. A. Gough e R. G. Sextro (p. 284) e, em 1983 (Physical Review Letters 50, p. 404), por M. D. Cable, J. Honkanen, R. F. Parry, S. H. Zhou, Z. Y. Zhou e Cerny.
                   A radioatividade com emissão de fragmentos mais pesados do que a partícula α,fenômeno hoje conhecido como radioatividade exótica, segundo o físico brasileiro Odilon Antonio Paula Tavares (n. 1943) [Ciência e Sociedade CBPF-CS-006/12 (Março, 2012); Ciência Hoje 50, p. 54 (Agosto, 2012)], foi pela primeira vez conjecturada, em 1975 e 1976 (Anais da Academia Brasileira de Ciências 47, p. 567; 48, p. 205), pelos físicos brasileiros Hervásio Guimarães de Carvalho (1916-1999), Jáder Benuzzi Martins (n. 1930), Iraci Oliveira de Souza (n.1943) e o próprio Odilon Tavares, ao observarem que uma emulsão fotográfica contendo urânio-238 (92U238registrava dois tipos de traços: um maior (cerca de 23  10-3mm), correspondendo à fissão espontânea do 92U238; e um menor (cerca de 09  10-3 mm), cuja análise sugeria que o mesmo poderia ser devido a íons pesados com massas maiores do que a dapartículaα (2He4). Logo depois, em 1977 (Journal of Physics G: Nuclear and Particle Physics 3, p. L189), os físicos, o romeno Aurel Sandulescu e o alemão Walter Greiner, mostraram que a possível enorme assimetria de massa na bipartição nuclear decorria dos efeitos da estrutura de camada [proposta, em 1948, pela física alemã Maria Goeppert-Mayer (1906-1972; PNF,1963) e, independentemente, pelos físicos, os alemães Johannes Hans Daniel Jensen (1907-1973; PNF, 1963) e Otto Haxel (1909-1998) e o físico químico austríaco Hans Eduard Suess (1909-1993), segundo vimos em verbete desta série] dos fragmentos nucleares. Essa assimetria foi confirmada logo em 1978 (Journal of Physics G: Nuclear and Particle Physics 4, p. L279), por Sandulescu, H. J. Lustig, J. Hahn e Greiner. Em 1980 (Fizika Èlementarnyh častic i Atomnogo Âdra 11, p. 1334; Soviet Journal Particle Nuclei 11, p. 528), cálculos mais refinados realizados por Sandulescu, Greiner e o físico romeno Denin N. Poenaru (n.1937) indicavam que, na radioatividade exótica, havia emissão de aglomerados(clusters) de prótons (p) e nêutrons (n) mais pesados do que a partícula α.  
elementos de Graceli.

tqoaiG =[hc][T/IEEpei [it]=[pTEMRLD] e[fao][ itd][iicee]tetdvd [pe] cee [caG].]

tqoaiG =Trajetórias quântica oscilatórias aleatórias indeterminadas Graceli.



Temperatura dividido por isótopos e estados físicos e estados potenciais de energias e isotopos = emissões, fluxos aleatórios de ondas, interações de íons, cargas e energias estruturas, tunelamentos e emaranhamentos, transformações e decaimentos, vibrações e dilatações, potencial eletrostático, condutividades, entropias e entalpias. categorias e agentes de Graceli.

h e = índice quântico e velocidade da luz.

[pTEMRD] = POTENCIAL TÉRMICO, ELÉTRICO, MAGNÉTICO, RADIOATIVO, DINÂMICO]..

um sistema gravitacional quântico Graceli que varia conforme energias, potenciais, estruturas, fenômenos, interações e transformações.



 Ainda em 1961, no livro GravitationAn Introduction to Current Research (John Wiley, p. 227), os fisicos norte-americanos R. L. Arnowitt, Stanley Deser (n.1931) e Misnerapresentaram a formulação hamiltoniana da Geometrodinâmica (ADM) da TRG. Assim, ao quantizarem essa Teoria, eles mostraram a finitude da auto-energia de uma partícula na mesma e, portanto, poderiam usar técnicas não-perturbativas na GQ. Em 1962 (Journal ofMathematical Physics 3, p. 566), Newman e o cosmólogo inglês Roger Penrose (n.1931) introduziram na TRG um formalismo envolvendo quantidades spinoriais. Ainda em 1962 (Nuovo Cimento 26, p. 53), o físico israelense Asher Peres (1934-2005) usou a formulação ADM e deduziu a equação de Hamilton-Jacobi para a TGR e, daí, ela passou a ser conhecida como da Equação de Einstein-Hamilton-Jacobi ou Equação de Peres:

g-1/2[(1/2) gab gcd - gac gbd] (S/gab) (S/gcd) + g1/2 R 

                        tqoaiG =[hc][T/IEEpei [it]=[pTEMRLD] e[fao][ itd][iicee]tetdvd [pe] cee [caG].]



onde g é o determinante da métrica (gij) 3-ADM [g = det (gij)], S é a ação e R é a curvatura dessa 3-geometria. Note que essa equação traduz a propagação de S (“cristas de onda”) no superespaço.
                   Um novo aspecto da QG foi apresentado por Penrose, em 1963 (Physical ReviewLetters 10, p. 66), ao considerar a hipótese de que o espaço poderia decorrer de uma estrutura quântica combinatorial e, desse modo, seus estudos levaram às redes de spin, como veremos mais adiante. No entanto, como essa ideia quantizava apenas o grupo de rotações (que envolve momento angular) e não o grupo de Lorentz (base das Teorias Especial e Geral da Relatividade), Penrose desenvolveu uma nova técnica (twistors, semelhantes aos spinores na TQC) para tratar das questões assintóticas nessas Teorias Relativistas. É interessante destacar que Penrose estava interessado em estudar a estrutura global do espaço-tempo e as equações de campos que descrevem partículas com massa de repouso nula, pois as mesmas são invariantes por uma transformação conforme, que é uma operação matemática que conserva a mesma forma de uma figura original. Destaque-se que, também em 1963 (Acta Physical Polonica 24, p. 697), o físico norte-americano Richard Philips Feynman (1918-1988; PNF, 1965) usou seu formalismo quântico para calcular as amplitudes das transições quânticas gravitacionais. Em 1964 (Physics Letters 9, p. 357; Physical ReviewB135, p. 1049; B140, p. 516), o físico norte-americano Steven Weinberg (n.1933; PNF, 1979) estudou a probabilidade de emissão de ondas gravitacionais (grávitons) usando a Mecânica Quântica.




Equação de Wheeler-DeWitt(EW-DW) (em notação atual):




    ,
tqoaiG =[hc][T/IEEpei [it]=[pTEMRLD] e[fao][ itd][iicee]tetdvd [pe] cee [caG].]

onde G é a constante gravitacional, Λ é o termo cosmológico, r(t) = R(t) s, sendo s um fator de escala,  γ = 1 para a radiação gravitacional , γ = 0 para a matéria gravitacional, c0 é uma constante, k = 0, + 1, -1, dependendo da geometria (plana, esférica e hiperbólica), e  é o operador hamiltoniano forçado (“constraint”) da TRG. Essa equação se aplica apenas ao campo gravitacional () e não para uma partícula em movimento nesse mesmo campo. Essa diferença é a mesma que acontece entre o campo eletromagnético maxwelliano e o movimento de uma partícula carregada nesse campo.




a emissão de partículas por parte de um BN, hoje conhecida como radiação (efeito) Hawking, foi completada por Hawking, em 1975 (Communications in Mathematical Physics 43, p. 199), em um trabalho no qual deduziu a célebre fórmula para a entropia de um buraco negro (SBN) que, no caso de ele ser esfericamente simétrico, tem a forma: SBH = 8π2 M2 (kB G/h c), hoje conhecida como Fórmula de Bekenstein-Hawking (FB-H), expressão que claramente que a entropia por unidade massa (SBN/M) é proporcional à massa M do buraco negro, confirmando o que Hawking havia sugerido no artigo de 1974 (visto acima), ou seja, que um BN poderia irradiar. Registre-se que um resultado análogo a esse foi encontrado, ainda em 1975, em trabalhos independentes de Robert M. Wald (Communications in Mathematical Physics 45, p. 9) e L. Parker (Physical Review D12, p. 1519). Observe-se que, em 1996 (Physics Letters B379, p. 99), a origem microscópica da FB-H foi discutida pelos físicos Strominger e o iraniano-norte-americano Cumrun Vafa (n.1960) por intermédio da Teoria de Cordas; neste artigo eles mostraram que os BN são corpos complexos, feitos de estruturas quânticas multidimensionais: as D-branas. Para outros detalhes sobre os buracos negros, ver: Kip S. ThorneBlack Holes & Time Warps (W. W. Norton & Company, 1994).

SBH = 8π2 M2 (kB G/h c),
tqoaiG =[hc][T/IEEpei [it]=[pTEMRLD] e[fao][ itd][iicee]tetdvd [pe] cee [caG].]